
Bash Basics

Bash Basics

Bash is a command shell that gives a lot more flexibility than the standard Windows
command shell. This document gives just enough information to get started using it, plus a
few common commands not actually part of bash which you are likely to want to use. A
comprehensive beginners manual for bash can be found at http://www.tldp.org/guides.html.

Useful Tips

• File paths use "/" character, NOT "\" character as in Windows.

• You can access windows drives as /cygdrive/drive (see below for examples).

• Scroll up and down through past commands using the up or down arrow.

• Edit a line using left or right arrows, delete and/or enter text, then hit return to execute
the line.

• If your command needs a file name you can type just the beginning of it (enough to
be unique) and press tab. Bash will complete the rest of the file name for you.

• To abandon a line, or to stop execution of a program, type control c.

• To direct standard output into a file, use the ">" symbol followed by the file name. This
will overwrite the contents of the file, if it already exists.

• To append standard output to a file (after any data that's already in it) use ">>"
followed by the file name.

• The * character is a file name wild-card - matches any string of characters (even a
dot) in a file name.

• The "|" character is a pipe - pipe the standard output of one command into the
standard input of another.

• To use a special character (such as > or * for example) in a word of a command
enclose the whole word in quotes.

• The current directory can be accessed as "." (dot).

• The parent directory of the current directory can be accessed as ".." (two dots).

• When you type in a command, bash looks in the search path (environment variable
PATH) for that command and prints an error message ("command not found") if it
can't find it.

• The current directory is often not included in the search path. If you want to execute
something from the current directory, prefix it with its path (eg ./myfile).

Some Useful Commands (not part of bash)

ls - list files in current directory (use "ls -l" to get more details on each file)

1 of 3

Bash Basics

cd - change directory. Without any argument goes to your home directory, otherwise goes to
the directory you name.

rm - remove (delete) a file (cannot then be undeleted). To recursively delete a directory and
all files below it use "rm -r"

cp - copy a file

mv - move a file - use to move a file to a different directory or just to rename a file.

mkdir - make a directory in the current directory

rmdir - remove a directory (must be empty - other wise use rm -r)

less - display the contents of a file on the screen, one screenfull at a time. Press space bar
to get next screen. Use up/down arrows to move up/down a line. Use "page up", "page
down" keys to scroll a page up or down. Use G (or "End" key) to go to the end of the file, 1G
(or "Home" key) to go to the start. Use "/string" to find string in the file. Press q to quit.

grep - look for a string in a file or files

Examples

$ ls *.txt lists all files whose name ends in .txt

$ ls -l results* lists details of all files whose name begins with results

$ cd newdir changes to directory (folder) newdir

$ cd .. changes to next directory up

$../doit execute the file called doit which can be found in the next
directory up

$../doit > res.txt execute doit and put its output into file res.txt in the current
directory

$../doit | less execute doit and pipe its output through less (display one screen
at a time)

$ mv ../doit . move doit from the next directory up to the current directory

$ mv doit fred rename file doit to the name fred

$ cp fred doit copy file fred to file doit (would overwrite doit if it already existed)

2 of 3

Bash Basics

$ rm do* delete all files whose name starts with do in current directory (eg
doit)

$ mkdir files make a directory called files in the current directory

$ grep "fred*" * look in all files in current directory for lines containing the string
fred* and print them out

$ grep -R "fred*" * as above, but recursively look through all files in all directories

$ grep -R "fred*" * | less as above, but pipe the results into less (display a
screen at a time)

$ ls /cygdrive/c/user list files in C:\user folder

$ cp -r foo /cygdrive/g Recursively copy the "foo" folder and all files below it to
drive g: (which might be, for example, your usb memory stick).

PRB 25/10/05

3 of 3

