ShuttertreiberV2

(Sieh auch das Vorgängermodel das nicht funktioniert hat: ShutterTreiberV1.)

Funktion

Ansteuern von Shutter von Typ Sunex SHT934. Mit Optokoppler, 5V TTL und 3V TTL als Eingang Beim anschalten soll ein extra Strompuls gegeben wirden damit schneller geschaltet wird.

Schalter	TTL Input	Shutter Output
0	Χ	0 mA
0→1	Χ	700 mA für 3 ms
1	Χ	200 mA
1→0	Χ	0 mA
С	0	0 mA
С	0→1	700 mA für 3 ms
С	1	200 mA
С	1→0	0 mA

Performance

Eckdaten des Sunex-Shutters

* Widerstand dder Spule: 4.7 Ω * Dauerstrom, um den Shuttter geschlossen zu halten: 170 mA

Datenblatt

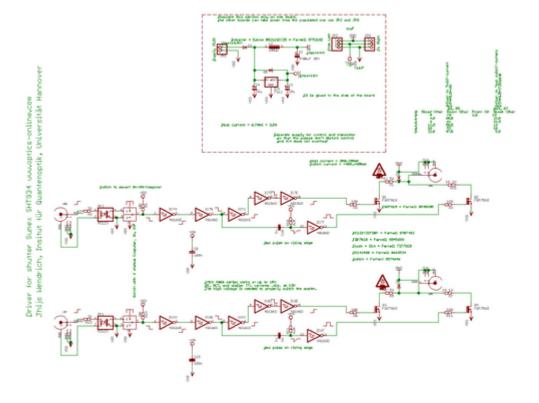
Status

Prototyp Fertig. Tests erfolgreich abgeschlossen. Aufwand für Nachbau: Akzeptabel Von der Version v3 wurde im Dezember 2009 für das Magnesium-Experiment eine 20er-Serie von Leiterplatten hergestellt. Davon sind noch einige Exemplare im Schrank der ElektronlQ vorhanden.

Entwickler

Thijs, CASI/* Auf wessen Mist das Ding gewachsen ist */

Anwender


CASI

Schaltungsprinzip

CMOS 4000 bei 15V versorgung als Mosfettreiber (keine normale 74xx) Strombegrenzung mit einer Leistungswiderstand.

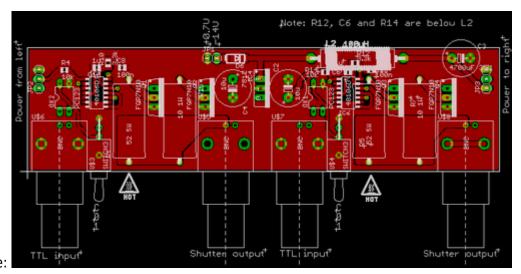
Schaltplan

- Die Source des Schaltplans ist auf der Download-Seite des Wiki abgelegt.
- Der Schaltplan als PDF
- Die Versorgung braucht man nur bei eine der drei der Platinen volständig zu bestücken.
- Die Ground und +15V Anschlüßen der Versorgung liegen nicht auf dem selben Potential wie die BNC-Buchsen!
- Der Schaltplan als png-Graphik:

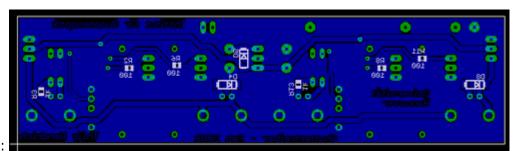
Layout

- Versorgung: 15V über Banan an der Rückseite, von einer separate Versorgung um Schaltpulsen zu entkoppeln von den Rest des Experiments.
- Eingang: BNC TTL (3V und 5V) mit Optokoppler

• Ausgang: BNC Shutter


• Anzeigen: Keine

• Platinengrößen: 130*34mm, Doppelseitig


• R1/R5 und R15/R7 an den Anzahl Shutter anpassen.

• Die Source des Layouts im Eagle-Format sollten auf der Download-Seite des Wiki liegen.

- Bestückungsplan Oberseite, Bestückungsplan Unterseite
- Bestückungsliste
- Screenshot vom Layout:

Oberseite:

Unterseite:

Gehäuse

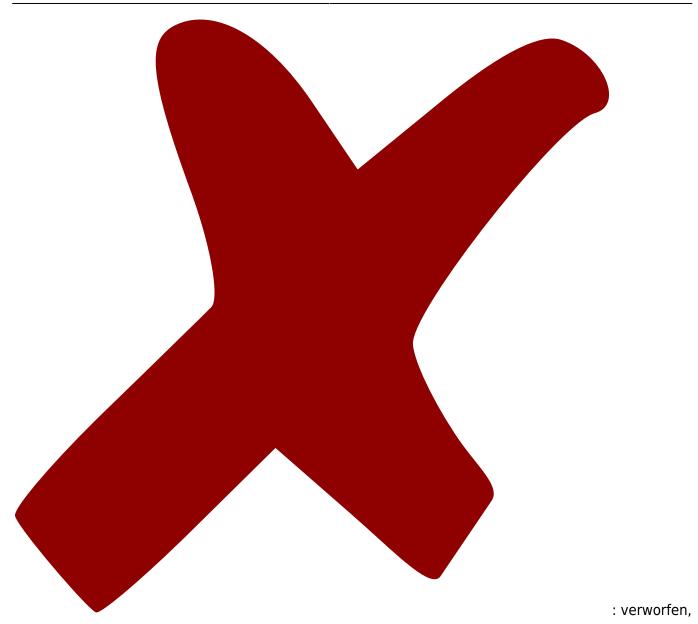
- 19" 1HE 60mm, umfast 3 Platinen mit insgesamt 6 Treiber
- Bohrplan: frontplatte.dwg(v1 hat noch 4 Löcher zu viel)
- Es ist auch noch ein 40 mm Lüfter mit Ein- und Ausgang einzubauen mit Versorgung, sonst drohen bei vollast einige Widerstanden von der Platine zu schmelzen.

Test

Testblatt: testsheet.doc

Bedienung

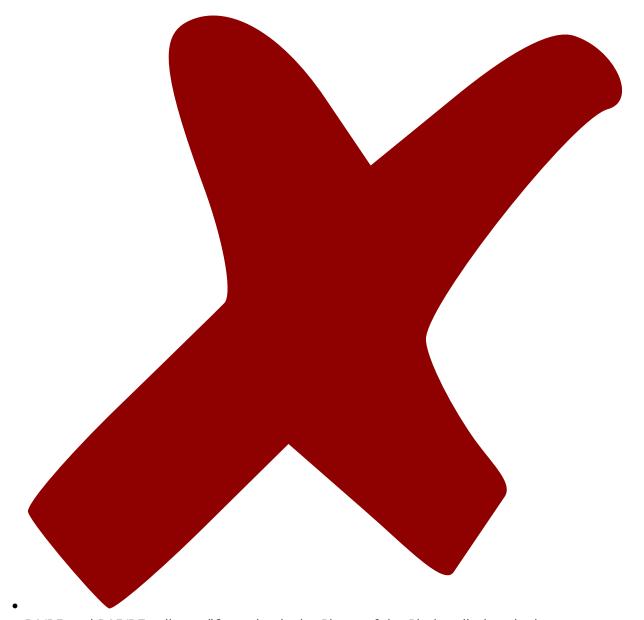
- Versorgung anschließen (15V). Beim anschalten fliessen kurzzeitig mehrere Ampere um die Pufferkondensator zu laden.
- TTL Trigger anschließen wenn nötig
- Shutter anschließen
- Schalter: 0=aus, 1=an, C=mit Computer gesteuert.


Die Widerstände R1/R5 und R15/R7 müssen an den Anzahl Shutter angepasst sein.

Bilder

Meckerliste

Was für die nächste Version zu tun ist: (


2024/05/05 22:31 7/9 ShuttertreiberV2

Schaltplan, aber noch nicht im Layout,

2024/05/05 22:31 9/9 ShuttertreiberV2

R1/R5 und R15/R7 sollen größer sein als der Platz auf der Platine direkt erlaubt.

From:

https://elektroniq.iqo.uni-hannover.de/ - **ElektronIQ**

Permanent link:

Last update: 2010/10/11 13:13

